6th Grade ~ Conceptual Foundations 9 - Statistics and Probability

Develop understanding of statistical variability.

1. Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am l?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.
2. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
3. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

Summarize and describe distributions.

4. Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
5. Summarize numerical data sets in relation to their context, such as by:
a. Reporting the number of observations
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variability (inter-quartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

Connections to Other Grades

In $1^{\text {st }}$ grade students ask and answer questions about the data points in a graph. A study of line plots is provided in grades 2 through 5 . Picture graphs and bar graphs are studied in grades 2 and 3 . Therefore, $6^{\text {th }}$ grade is a foundational year for histograms and box plots.

Generating statistical questions and looking at the distribution of data to identify measures of center, spread, and overall shape is new in 6 th grade. These skills lay the foundation for statistics and probability in $7^{\text {th }}$ and $8^{\text {th }}$ grades.

Statistical Question

What is a statistical question? A question that generates a variety of answers is called a statistical question. Depending on the question, the type of data gathered can be either categorical or numerical. An example of a categorical question is "What is your favorite type of pizza?" The answers generated by this question will be categories of pizza types such as pepperoni, cheese, or sausage. An example of a numerical question is "How many pencils does each member of our class have in his or her desk?" A variety of numerical answers about the number of pencils would be given by a typical $6^{\text {th }}$ grade class.

In $6^{\text {th }}$ grade, the focus should be on statistical questions that generate numerical data. Once the data is gathered, it can be organized in a table and/or displayed in a graph. The types of graphs to be focused on in $6^{\text {th }}$ grade are dot plots (line plots), histograms, and box plots (box-and-whisker plots.) After organizing the data into tables and/or graphs, students will analyze the data finding measures of center and measures of variation to draw conclusions.

Examples of Statistical Questions

Non-Examples of Statistical Questions

- How old are the students in my school?
- How many pets are owned by each student in my grade level?
- What are the math test scores of the students in my class?
- How many cupcakes of each type were made at the bakery in a week?
- How many letters are in the names of each person in my class?
- What is the height of each person in $m y$ class?
- How old am I?
- How many pets do I own?
- What is my math test score?
- What is my favorite type of cupcake?
- How many letters are in my name?
- What is my height?

The Shape of Data - A set of data can be distributed or placed on a graph in order to show characteristics of the data set. When placed on a graph, it is easier to see how the data is spread out or clustered together. To discuss the shape of the data set as a whole, students use the terms cluster, gap, and outlier. A cluster of data is a grouping of numbers that are close together in values. Looking at the line plot below, you can see the cluster of data is from 0 to 25 . A gap is a place on the graph where no data values are present. On the graph below there is a gap between 26 and 39 . Since the gap is very large between 26 and 37 , the data value at 38 is called an outlier. An outlier is a number in a data set that is much larger or much smaller than the other numbers in the data set.

Hours Watching TV In One Week

Why is it important to look at the shape of the data?

Observing the shape of the data on a graph gives a snapshot view of the overall characteristics. Generalizations can be made about the frequency and patterns of responses. For example, a teacher asks a class the question "How many hours of TV do you watch in a week?" By looking at a graph of the data, a general observation might be that a large number of students watch 10 to 20 hours of TV in a week. A second observation could be that one student watches almost double the amount of TV compared to other students.

DATA DISTRIBUTION: Center and Spread

There are two main ways that $6^{\text {th }}$ graders will summarize a data set. Students will examine and use measures of center and measures of variation.

- Measures of center (also called 'measures of central tendency') describe how data looks at the center. With a measure of center, we use a single number to summarize all of the values. The three most commonly used measures of center are mean, median, and mode. Students in $6^{\text {th }}$ grade are to focus on finding the mean and median.
- Measures of variation (also called 'measures of spread' or 'measures of dispersion') are ways to measure how much a collection of data is spread out. With a measure of variation, a single number describes how the values vary in a set. Students in $6^{\text {th }}$ grade should be able to find range and mean absolute deviation.

Measures of Center

Mean is the sum of the values in a set divided by the number of values in the set. In the dot plot below, each 'x' represents a data value for how many pets each student owns. Students need to add the values of each ' x ' to find a total sum or number of pets owned by all class members. Then they divide that sum by the number of values, which is the same as the number of students. This gives the mean number of pets for each student.

$$
(1+1+1+1+1+1+2+2+2+3+3+4+4+4+5+5+5+5+5) \div 19=2.9 \text { pets for each student }
$$

When should the mean be utilized? Mean is useful when most of the data is tightly clustered as in the graph below. This means there are no extreme values or outiers.
Median is the middle number of a set of values when the numbers are arranged in order from least to greatest. If there are two middle numbers, the median is the mean of those numbers. In the dot plot below, the median value is 3 .

When should median be selected? Median is useful as a measure of center when there are extreme values or outliers and there are no big gaps in the middle of the data set. Median is also used in constructing box plots.
Mode is the number that appears most frequently in a set of numbers. There may be one mode, more than one mode, or no mode for a given data set. In the dot plot below, the mode is 1 . The most frequent number of pets owned is 1 .

When should the mode be selected? Mode can be a good choice when there are many identical data points because it describes what is typical about the set of data.
Dot Plot Example:

Measures of Variation (Spread)

Range is the difference between the maximum and the minimum in a set of data. In the box plot below, the highest math test score is 100% and the lowest math test score is 30%. The range would then be 100% minus 30% which is 70%.

$$
100-30=70 \%
$$

Why is range important? Range is valuable for knowing how far apart the minimum and maximum values are in a data set. It helps to know when the spread of data is close together or far apart.
Mean Absolute Deviation is an average of how far each data point in a set is from the mean of the set of data. A detailed description of how to find the mean absolute deviation for a set of data is included in this document.
Lower Quartile (Q1) is the median of the lower half of an ordered set of data. In the box plot below, the median of the lower half of the data is 50 . This means that the middle test score in the lower half of the data was 50%.

Upper Quartile (Q3) is the median of the upper half of an ordered set of numbers. In the box plot below, the median of the upper half of the data is 93 . The middle test score in the upper half of the data was 93%.

Why are the lower and upper quartiles important? Knowing the lower and upper quartiles helps to determine whether data points are outliers.

Interquartile Range is the difference between the upper quartile and the lower quartile. In the box plot below, the interquartile range is $93-50=43$.
Box Plot (Box-and-Whisker Plot) Example:
Math Test Scores in Percents
Range $=70$
Q1 $=50$
Q3 $=92$

Matching a Statistical Question to a Graph

Sixth graders should be able to examine the shape of data on a graph and determine which statistical question best fits the shape of the data. For example, which question best fits the dot plot below? 1) How many glasses of milk does each member of our class drink a day? 2) How many letters are in the first name of each class member? 3) How many text messages does each class member send in a day? 4) How many library books are in each class member's desk?

The best choice is "How many text messages does each class member send in a day?" The given numbers on the number line are not reasonable for glasses of milk, letters in a first name, or library books in a desk. This type of problem ties nicely into the Mathematical Practice Standard "Construct viable arguments and critique the reasoning of others." Students can justify their answers based on logical reasoning for each context in the possible answer choices.

Looking at Subgroups
Depending on the question, an entire data set may be studied as a whole or as component parts. To look at it as component parts means to make comparisons between the responses of different subgroups that answered the question. For the question, "How many pencils does each member of our class have in his or her desk?" students might look at the class as a whole, or they might compare the numbers of pencils in the boys' desks compared to the girls' desks. Here we can see in the whole class box plot that the number of pencils in a desk range from 0 to 30 , with the median being 7. Once this is broken down into subgroups, it can be seen that the lower extreme of 0 is found in the data about boys' desks, while the upper extreme of 30 pencils is found in the data about girls' desks. The median number of pencils found in girls' desks (17) is higher than the median number of pencils found in boys' desks (9). Additionally, students might generalize that boys have fewer pencils in their desks and closer to the same amount of pencils than found in girls' desks.
Example:

Number of Pencils in Desk

Girls

Boys

Whole Class

DATA DISPLAYS

Importance of Data Displays

Why are data displays important? We use data displays to organize information and make a visual representation for easy analysis. Imagine reading a newspaper article with numerous facts and figures that are too difficult to remember separately. Now imagine there is a graph attached to the article that takes all of those numbers and visually organizes the information.

The information is then a valuable, informative tool.

$6^{\text {th }}$ Grade Focus

There are three data displays $6^{\text {th }}$ graders should be able to create and interpret. The first is a dot plot, which is a type of line plot. Although students have been making line plots since $2^{\text {nd }}$ grade, the level of sophistication in the interpretation of the data is greatly increased by $6^{\text {th }}$ grade. Students construct and interpret histograms, which require them to learn about intervals that reflect a range of numbers. Finally, $6^{\text {th }}$ graders learn to make box plots (box-and-whisker plots). Each type of graph is described below in detail with a different data set. Finally, one data set is modeled on all three graphs in order to compare and contrast the features of the displays.

Creating a Histogram

1) Make a frequency table of the data by selecting a range that will contain all of the data and then divide it into equal intervals. In the example above, the range of ages is from 0 to 69 so equal intervals of 10 years were selected.

Age of People Attending a Movie					
Age Ranges	Tally	Frequency			
$0-9$	$\\|\\|$	3			
$10-19$	$\\|\\|\\|$	4			
$20-29$	HH\|	6			
$30-39$	HH\|ll	8			
$40-49$		0			
$50-59$	$\\|$	1			
$60-69$	$\\|$	2			

2) Using graph paper, draw an x-axis where each box will represent an interval of numbers to represent the ranges.
3) Draw a y-axis with a scale of numbers appropriate for the data. Common scales are multiples of 1, 2, 5, 10 or 20.
4) Draw each bar on the histogram to correlate the intervals with the frequency of occurrence.
5) Title the graph and the x and y-axis.

The mean absolute deviation is an average of how far each data point in a set is from the mean of the set of data. In other words, it is the "average distance from the average."

Example Problem:

The weights of three students are 56 pounds, 78 pounds, and 91 pounds. What is the mean absolution deviation in weights?

Step 1: Find the mean of the set of data. In the example problem, students add up the weights and then divide by 3 to find the mean.

$$
(56+78+91) \div 3=75
$$

Step 2: Determine the deviation or difference of each number in the data set from the mean. The mean of the example problem is 75 . Subtract 75 from each number in the data set to find the difference.

$$
\begin{gathered}
56-75=-19 \\
78-75=3 \\
91-75=16
\end{gathered}
$$

Step 3: Find the absolute value of each deviation from Step 2.

$$
\begin{aligned}
& |-19|=19 \\
& |3|=3 \\
& |16|=16
\end{aligned}
$$

Step 4: Find the average of the absolute deviations from Step 3.

$$
(19+3+16) \div 3=12.67
$$

Answer: 12.67 is the mean absolute deviation. pounds. By calculating the mean absolute deviation, it can be said that each person weighs an average of 12.67 pounds more or 12.67 pounds less than the mean of 75 pounds.

Simplified Method for Determining the Mean Absolute Deviation

1) Place the values on a dot or line plot and determine the mean.

2) Mark the distances from the mean by each dot or in place of the dot. Add the distances from the mean and divide by the total number of values.

The mean absolute deviation is approximately 3.83, or each value is about 4 away from the mean. Sample Questions Students Should Be Able to Answer About the Data in a Graph

What is the statistical question asked?
How many observations were made?
How many people were surveyed to gather the data?
What was measured or counted by the statistical question?
How was the attribute measured or counted?
What unit of measurement is being used to describe the data?
What is the shape of the data?

Where are the clusters or gaps in the data?
Are there any outliers in the data?
Is mean or median a better descriptor for the measure of center for a particular set of data?
What is the mean absolute deviation of the data points in the set?
What is the range of the data?
What is the lower quartile (Q1) or median of the lower half of the data?
What is the upper quartile (Q3) or median of the upper half of the data?

